Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Chem ; 69(7): 763-770, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37207672

RESUMO

BACKGROUND: Deafness, autosomal recessive 16 (DFNB16) is caused by compound heterozygous or homozygous variants in STRC and is the second most common form of genetic hearing loss. Due to the nearly identical sequences of STRC and the pseudogene STRCP1, analysis of this region is challenging in clinical testing. METHODS: We developed a method that accurately identifies the copy number of STRC and STRCP1 using standard short-read genome sequencing. Then, we used whole genome sequencing (WGS) data to investigate the population distribution of STRC copy number in 6813 neonates and the correlation between STRC and STRCP1 copy number. RESULTS: The comparison of WGS results with multiplex ligation-dependent probe amplification demonstrated high sensitivity (100%; 95% CI, 97.5%-100%) and specificity (98.8%; 95% CI, 97.7%-99.5%) in detecting heterozygous deletion of STRC from short-read genome sequencing data. The population analysis revealed that 5.22% of the general population has STRC copy number changes, almost half of which (2.33%; 95% CI, 1.99%-2.72%) were clinically significant, including heterozygous and homozygous STRC deletions. There was a strong inverse correlation between STRC and STRCP1 copy number. CONCLUSIONS: We developed a novel and reliable method to determine STRC copy number based on standard short-read based WGS data. Incorporating this method into analytic pipelines would improve the clinical utility of WGS in the screening and diagnosis of hearing loss. Finally, we provide population-based evidence of pseudogene-mediated gene conversions between STRC and STRCP1.


Assuntos
Perda Auditiva Neurossensorial , Perda Auditiva , Recém-Nascido , Humanos , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/genética , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Sequência de Bases , Homozigoto , Variações do Número de Cópias de DNA , Peptídeos e Proteínas de Sinalização Intercelular/genética
2.
Am J Obstet Gynecol MFM ; 5(1): 100790, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36377092

RESUMO

BACKGROUND: Genome-wide noninvasive prenatal testing identifies several rare autosomal trisomies in the general obstetrical population, but its use is questioned by its low positive predictive value. Furthermore, the origin of rare autosomal trisomies and the clinical effect of reporting them has not been sufficiently investigated. In addition, professional societies express their need for data assessing the clinical use of genome-wide noninvasive prenatal testing for rare autosomal trisomies for years. OBJECTIVE: This study aimed to investigate the origin of rare autosomal trisomies and the clinical effect of disclosing rare autosomal trisomies in clinical settings. STUDY DESIGN: Women who received noninvasive prenatal testing between March 2021 and March 2022 were prospectively enrolled. Clinical follow-up and cytogenetic and molecular investigations were performed. Posthoc analysis was performed to investigate the association between placental mosaicism and clinical outcomes. RESULTS: Overall, 154 rare autosomal trisomies were identified in 89,242 pregnancies (0.17%) through noninvasive prenatal testing. In the 120 cases in which cytogenetic and molecular investigations were carried out, the rare autosomal trisomies were found to originate from true fetal mosaicism (n=5), uniparental disomy (n=5), maternal mosaic trisomy (n=3), maternal malignancy (n=1), and confined placental mosaicism (n=106). Clinical follow-up showed that 40% of all rare autosomal trisomy cases had adverse perinatal outcomes. In women with false-positive noninvasive prenatal testing results originating from confined placental mosaicism, the frequency of adverse perinatal outcomes was 26%. More importantly, the placental mosaicism ratio revealed by noninvasive prenatal testing was significantly higher in women who experienced adverse perinatal outcomes than those who did not (0.688 vs 0.332; P<.001). CONCLUSION: Women with noninvasive prenatal testing results indicative of rare autosomal trisomies are at risk of adverse perinatal outcomes, and that risk can be stratified using chromosomes and the mosaicism ratio revealed by noninvasive prenatal testing. Our data are valuable for obstetrical caregivers advising a patient with a noninvasive prenatal testing result indicative of a rare autosomal trisomy and a false-positive diagnosis and for managing risks during pregnancy.


Assuntos
Teste Pré-Natal não Invasivo , Trissomia , Feminino , Gravidez , Humanos , Trissomia/diagnóstico , Trissomia/genética , Trissomia/patologia , Placenta/patologia , Mosaicismo , Cromossomos
3.
Hum Mutat ; 42(12): 1567-1575, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34428318

RESUMO

The American College of Medical Genetics and Genomics, and the Association for Molecular Pathology (ACMG/AMP) have proposed a set of evidence-based guidelines to support sequence variant interpretation. The ClinGen hearing loss expert panel (HL-EP) introduced further specifications into the ACMG/AMP framework for genetic hearing loss. This study developed a tool named Variant Interpretation Platform for genetic Hearing Loss (VIP-HL), aiming to semi-automate the HL ACMG/AMP rules. VIP-HL aggregates information from external databases to automate 13 out of 24 ACMG/AMP rules specified by HL-EP, namely PVS1, PS1, PM1, PM2, PM4, PM5, PP3, BA1, BS1, BS2, BP3, BP4, and BP7. We benchmarked VIP-HL using 50 variants in which 82 rules were activated by the ClinGen HL-EP. VIP-HL concordantly activated 93% (76/82) rules, significantly higher than that of by InterVar (48%; 39/82). VIP-HL is an integrated online tool for reliable automated variant classification in hearing loss genes. It assists curators in variant interpretation and provides a platform for users to share classifications with each other. VIP-HL is available with a user-friendly web interface at http://hearing.genetics.bgi.com/.


Assuntos
Genoma Humano , Perda Auditiva , Humanos , Testes Genéticos , Variação Genética , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Estados Unidos
4.
BMC Med Genomics ; 14(1): 102, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33849535

RESUMO

BACKGROUND: Due to its reduced cost and incomparable advantages, WGS is likely to lead to changes in clinical diagnosis of rare and undiagnosed diseases. However, the sensitivity and breadth of coverage of clinical WGS as a diagnostic test for genetic disorders has not been fully evaluated. METHODS: Here, the performance of WGS in NA12878, the YH cell line, and the Chinese trios were measured by assessing their sensitivity, PPV, depth and breadth of coverage using MGISEQ-2000. We also compared the performance of WES and WGS using NA12878. The sensitivity and PPV were tested using the family-based trio design for the Chinese trios. We further developed a systematic WGS pipeline for the analysis of 8 clinical cases. RESULTS: In general, the sensitivity and PPV for SNV/indel detection increased with mean depth and reached a plateau at an ~ 40X mean depth using down-sampling samples of NA12878. With a mean depth of 40X, the sensitivity of homozygous and heterozygous SNPs of NA12878 was > 99.25% and > 99.50%, respectively, and the PPV was 99.97% and 98.96%. Homozygous and heterozygous indels showed lower sensitivity and PPV. The sensitivity and PPV were still not 100% even with a mean depth of ~ 150X. We also observed a substantial variation in the sensitivity of CNV detection across different tools, especially in CNVs with a size less than 1 kb. In general, the breadth of coverage for disease-associated genes and CNVs increased with mean depth. The sensitivity and coverage of WGS (~ 40X) was better than WES (~ 120X). Among the Chinese trios with an ~ 40X mean depth, the sensitivity among offspring was > 99.48% and > 96.36% for SNP and indel detection, and the PPVs were 99.86% and 97.93%. All 12 previously validated variants in the 8 clinical cases were successfully detected using our WGS pipeline. CONCLUSIONS: The current standard of a mean depth of 40X may be sufficient for SNV/indel detection and identification of most CNVs. It would be advisable for clinical scientists to determine the range of sensitivity and PPV for different classes of variants for a particular WGS pipeline, which would be useful when interpreting and delivering clinical reports.


Assuntos
Variações do Número de Cópias de DNA , Testes Diagnósticos de Rotina , Genoma Humano , Humanos
5.
Sci Rep ; 11(1): 4036, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33597575

RESUMO

Hearing loss is one of the most common birth disorders in humans, with an estimated prevalence of 1-3 in every 1000 newborns. This study investigates the molecular etiology of a hearing loss cohort using a stepwise strategy to effectively diagnose patients and address the challenges posed by the genetic heterogeneity and variable mutation spectrum of hearing loss. In order to target known pathogenic variants, multiplex PCR plus next-generation sequencing was applied in the first step; patients which did not receive a diagnosis from this were further referred for exome sequencing. A total of 92 unrelated patients with nonsyndromic hearing loss were enrolled in the study. In total, 64% (59/92) of the patients were molecularly diagnosed, 44 of them in the first step by multiplex PCR plus sequencing. Exome sequencing resulted in eleven diagnoses (23%, 11/48) and four probable diagnoses (8%, 4/48) among the 48 patients who were not diagnosed in the first step. The rate of secondary findings from exome sequencing in our cohort was 3% (2/58). This research presents a molecular diagnosis spectrum of 92 non-syndromic hearing loss patients and demonstrates the benefits of using a stepwise diagnostic approach in the genetic testing of nonsyndromic hearing loss.


Assuntos
Surdez/diagnóstico , Surdez/genética , Testes Genéticos/métodos , Pré-Escolar , China , Feminino , Genótipo , Perda Auditiva/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Lactente , Recém-Nascido , Masculino , Reação em Cadeia da Polimerase Multiplex/métodos , Mutação , Linhagem , Sequenciamento do Exoma/métodos
6.
Hum Mutat ; 41(9): 1488-1498, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32442321

RESUMO

Null variants are prevalent within the human genome, and their accurate interpretation is critical for clinical management. In 2018, the ClinGen Sequence Variant Interpretation (SVI) Working Group refined the only criterion with a very strong pathogenicity rating (PVS1). To streamline PVS1 interpretation, we have developed an automatic classification tool with a graphical user interface called AutoPVS1. The performance of AutoPVS1 was assessed using 56 variants manually curated by the ClinGen's SVI Working Group; it achieved an interpretation concordance of 93% (52/56). A further analysis of 28,586 putative loss-of-function variants by AutoPVS1 demonstrated that at least 27.7% of them do not reach a very strong strength level, 17.5% because of variant-specific issues and 10.2% due to disease mechanism considerations. Notably, 41.0% (1,936/4,717) of splicing variants were assigned a decreased preliminary PVS1 strength level, a significantly greater fraction than in frameshift variants (13.2%) and nonsense variants (10.8%). Our results reinforce the necessity of considering variant-specific issues and disease mechanisms in variant interpretation and demonstrate that AutoPVS1 meets an urgent need by enabling biocurators to easily assign accurate, reliable and reproducible PVS1 strength levels in the process of variant interpretation. AutoPVS1 is publicly available at http://autopvs1.genetics.bgi.com/.


Assuntos
Genômica/métodos , Mutação com Perda de Função , Biologia Computacional/métodos , Genoma Humano , Humanos , Software , Interface Usuário-Computador
7.
Hum Genet ; 139(4): 521-530, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32002660

RESUMO

Newborn hearing screening is not designed to detect delayed-onset prelingual hearing loss or aminoglycoside-antibiotic-induced ototoxicity. Cases with severe to profound hearing loss have been reported to have been missed by newborn hearing screens. The aim of this study was to evaluate the efficacy of concurrent hearing and genetic screening in the general population and demonstrate its benefits in practice. Enrolled newborns received concurrent hearing and genetic screens between September 1, 2015 and January 31, 2018. Of the 239,636 eligible infants (median age, 19 months), 548 (0.23%) had prelingual hearing loss. Genetic screening identified 14 hearing loss patients with positive genotypes and 27 patients with inconclusive genotypes who had passed the hearing screens. In addition, the genetic screen identified 0.23% (570/239,636) of the newborns and their family members as at-risk for ototoxicity, which is undetectable by hearing screens. In conclusion, genetic screening complements newborn hearing screening by improving the detection of infants at risk of hereditary hearing loss and ototoxicity, and by informing genotype-based clinical management for affected infants and their family members. Our findings suggest that the practice should be further validated in other populations and rigorous cost-effectiveness analyses are warranted.


Assuntos
Testes Genéticos , Perda Auditiva , Triagem Neonatal , Feminino , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Testes Auditivos , Humanos , Lactente , Recém-Nascido , Masculino , Estudos Retrospectivos
8.
BMC Med Genomics ; 12(1): 76, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31138263

RESUMO

BACKGROUND: Congenital hearing loss affects approximately 1-2 infants out of every 1000, with 50% of the cases resulting from genetic factors. Targeted gene panels have been widely used for genetic diagnosis of hearing loss. This study aims to reveal new diagnoses via reanalyzing historical data of a multigene panel, and exam the reasons for new diagnoses. METHODS: A total of 210 samples were enlisted, including clinical reports and sequencing data of patients with congenital/prelingual hearing loss who were referred to clinical genetic testing from October 2014 to June 2017. All variants listed on the original clinical reports were reinterpreted according to the standards and guidelines recommended by the American College of Medical Genetics and Genomics and the Association for Molecular Pathology (ACMG/AMP). Expanded analysis of raw data were performed in undiagnosed cases. RESULTS: Re-analysis resulted in nine new diagnoses, improving the overall diagnostic rate from 39 to 43%. New diagnoses were attributed to newly published clinical evidence in the literature, adoption of new interpretation guidelines and expanded analysis range. CONCLUSION: This work demonstrates benefits of reanalysis of targeted gene panel data, indicating that periodical reanalysis should be performed in clinical practice.


Assuntos
Perda Auditiva/diagnóstico , Perda Auditiva/genética , Técnicas de Diagnóstico Molecular/métodos , Estudos de Coortes , Feminino , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Estudos Retrospectivos
9.
Genome Biol ; 20(1): 24, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30712515

RESUMO

BACKGROUND: Recent studies have revealed thousands of A-to-I RNA editing events in primates, but the origination and general functions of these events are not well addressed. RESULTS: Here, we perform a comparative editome study in human and rhesus macaque and uncover a substantial proportion of macaque A-to-I editing sites that are genomically polymorphic in some animals or encoded as non-editable nucleotides in human. The occurrence of these recent gain and loss of RNA editing through DNA point mutation is significantly more prevalent than that expected for the nearby regions. Ancestral state analyses further demonstrate that an increase in recent gain of editing events contribute to the over-representation, with G-to-A mutation site as a favorable location for the origination of robust A-to-I editing events. Population genetics analyses of the focal editing sites further reveal that a portion of these young editing events are evolutionarily significant, indicating general functional relevance for at least a fraction of these sites. CONCLUSIONS: Overall, we report a list of A-to-I editing events that recently originated through G-to-A mutations in primates, representing a valuable resource to investigate the features and evolutionary significance of A-to-I editing events at the population and species levels. The unique subset of primate editome also illuminates the general functions of RNA editing by connecting it to particular gene regulatory processes, based on the characterized outcome of a gene regulatory level in different individuals or primate species with or without these editing events.


Assuntos
Evolução Molecular , Macaca mulatta/genética , Edição de RNA , Animais , Humanos , Mutação
10.
Mol Biol Evol ; 33(5): 1370-5, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26882984

RESUMO

Although population genetics studies have significantly accelerated the evolutionary and functional interrogations of genes and regulations, limited polymorphism data are available for rhesus macaque, the model animal closely related to human. Here, we report the first genome-wide effort to identify and visualize the population genetics profile in rhesus macaque. On the basis of the whole-genome sequencing of 31 independent macaque animals, we profiled a comprehensive polymorphism map with 46,146,548 sites. The allele frequency for each polymorphism site, the haplotype structure, as well as multiple population genetics parameters were then calculated on a genome-wide scale. We further developed a specific interface, the RhesusBase PopGateway, to facilitate the visualization of these annotations, and highlighted the applications of this highly integrative platform in clarifying the selection signatures of genes and regulations in the context of the primate evolution. Overall, the updated RhesusBase provides a comprehensive monkey population genetics framework for in-depth evolutionary studies of human biology.


Assuntos
Macaca mulatta/genética , Animais , Evolução Biológica , China , Bases de Dados de Ácidos Nucleicos , Genética Populacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Metagenômica/métodos , Metagenômica/normas , Análise de Sequência de DNA/métodos
11.
Mol Biol Evol ; 32(12): 3143-57, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26341297

RESUMO

Although millions of RNA editing events have been reported to modify hereditary information across the primate transcriptome, evidence for their functional significance remains largely elusive, particularly for the vast majority of editing sites in noncoding regions. Here, we report a new mechanism for the functionality of RNA editing-a crosstalk with PIWI-interacting RNA (piRNA) biogenesis. Exploiting rhesus macaque as an emerging model organism closely related to human, in combination with extensive genome and transcriptome sequencing in seven tissues of the same animal, we deciphered accurate RNA editome across both long transcripts and the piRNA species. Superimposing and comparing these two distinct RNA editome profiles revealed 4,170 editing-bearing piRNA variants, or epiRNAs, that primarily derived from edited long transcripts. These epiRNAs represent distinct entities that evidence an intersection between RNA editing regulations and piRNA biogenesis. Population genetics analyses in a macaque population of 31 independent animals further demonstrated that the epiRNA-associated RNA editing is maintained by purifying selection, lending support to the functional significance of this crosstalk in rhesus macaque. Correspondingly, these findings are consistent in human, supporting the conservation of this mechanism during the primate evolution. Overall, our study reports the earliest lines of evidence for a crosstalk between selectively constrained RNA editing regulation and piRNA biogenesis, and further illustrates that such an interaction may contribute substantially to the diversification of the piRNA repertoire in primates.


Assuntos
Macaca mulatta/genética , Edição de RNA , RNA Interferente Pequeno/biossíntese , Análise de Sequência de RNA/métodos , Animais , Humanos , Macaca mulatta/metabolismo , Modelos Animais , RNA Interferente Pequeno/genética , Transcriptoma
12.
PLoS Genet ; 11(7): e1005391, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26177073

RESUMO

While some human-specific protein-coding genes have been proposed to originate from ancestral lncRNAs, the transition process remains poorly understood. Here we identified 64 hominoid-specific de novo genes and report a mechanism for the origination of functional de novo proteins from ancestral lncRNAs with precise splicing structures and specific tissue expression profiles. Whole-genome sequencing of dozens of rhesus macaque animals revealed that these lncRNAs are generally not more selectively constrained than other lncRNA loci. The existence of these newly-originated de novo proteins is also not beyond anticipation under neutral expectation, as they generally have longer theoretical lifespan than their current age, due to their GC-rich sequence property enabling stable ORFs with lower chance of non-sense mutations. Interestingly, although the emergence and retention of these de novo genes are likely driven by neutral forces, population genetics study in 67 human individuals and 82 macaque animals revealed signatures of purifying selection on these genes specifically in human population, indicating a proportion of these newly-originated proteins are already functional in human. We thus propose a mechanism for creation of functional de novo proteins from ancestral lncRNAs during the primate evolution, which may contribute to human-specific genetic novelties by taking advantage of existed genomic contexts.


Assuntos
Evolução Molecular , Genética Populacional , Filogenia , RNA Longo não Codificante/genética , Animais , Sequência Rica em GC/genética , Genoma Humano , Humanos , Macaca mulatta/genética , Fases de Leitura Aberta , Primatas/genética , Splicing de RNA/genética
13.
Mol Biol Evol ; 31(5): 1309-24, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24577841

RESUMO

With genome sequence and composition highly analogous to human, rhesus macaque represents a unique reference for evolutionary studies of human biology. Here, we developed a comprehensive genomic framework of rhesus macaque, the RhesusBase2, for evolutionary interrogation of human genes and the associated regulations. A total of 1,667 next-generation sequencing (NGS) data sets were processed, integrated, and evaluated, generating 51.2 million new functional annotation records. With extensive NGS annotations, RhesusBase2 refined the fine-scale structures in 30% of the macaque Ensembl transcripts, reporting an accurate, up-to-date set of macaque gene models. On the basis of these annotations and accurate macaque gene models, we further developed an NGS-oriented Molecular Evolution Gateway to access and visualize macaque annotations in reference to human orthologous genes and associated regulations (www.rhesusbase.org/molEvo). We highlighted the application of this well-annotated genomic framework in generating hypothetical link of human-biased regulations to human-specific traits, by using mechanistic characterization of the DIEXF gene as an example that provides novel clues to the understanding of digestive system reduction in human evolution. On a global scale, we also identified a catalog of 9,295 human-biased regulatory events, which may represent novel elements that have a substantial impact on shaping human transcriptome and possibly underpin recent human phenotypic evolution. Taken together, we provide an NGS data-driven, information-rich framework that will broadly benefit genomics research in general and serves as an important resource for in-depth evolutionary studies of human biology.


Assuntos
Evolução Molecular , Macaca mulatta/genética , Animais , Bases de Dados de Ácidos Nucleicos , Perfilação da Expressão Gênica , Genoma Humano , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Modelos Genéticos , Anotação de Sequência Molecular , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...